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H I G H L I G H T S

• P. sanguineus growth conditions are optimized for Lac, Bet, and Cmc activities.• A novel workflow integrating experiments and process simulations is offered.

• Kriging is used to model time-profile data from activity measurements.

• The workflow is demonstrated on a bioethanol production process case study.

• Significance of Bet activity favors yeast extract dominated optimal growth medium.
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A B S T R A C T

An optimization workflow is introduced which integrates multi-objective optimization of lignocellulolytic en-
zyme cocktail ingredients with a bioethanol production process where the enzymes are utilized. The workflow
integrates data collection via exploratory experiments, modeling via Kriging, Pareto-based multi-objective op-
timization, and process simulation. The critical links in the integration are calculation of enzyme cocktail per-
formance and cost. This allows the identification of the best Pareto-optimal result depending on process simu-
lation results. The workflow is demonstrated on a case study involving the production of lignocellulolytic
enzymes laccase, β-glucosidase, and carboxymethyl cellulase by a white rot fungus, Pycnoporus sanguineus DSMZ
3024. Concentrations of various carbon and nitrogen sources and culture duration are optimized. Two cases are
analyzed: i) where all culture conditions and three enzyme activities are assumed to affect enzyme cost and
performance equally; ii) where culture duration and β-glucosidase activity are assumed to respectively affect
enzyme cost and performance more significantly compared to the other factors. The integrated optimization
workflow identified a shift from a malt extract dominant growth medium in the first case to a yeast extract
dominant medium in the second. This shift could not have been identified without the proposed workflow.

1. Introduction

Production of bioethanol from lignocellulosic feedstock is a pro-
mising and potentially sustainable alternative to petroleum-based fuel
[1]. Enzymatic bioprocessing of lignocellulosic raw materials is a pre-
ferable route compared to alternatives like acid treatment, due to
milder operating conditions and simpler downstream processing re-
quirements [2]. However, the high cost of lignocellulolytic enzymes is a
major challenge towards the commercialization of such bioprocesses
[3]. Techno-economic analyses of bioethanol production processes from
various lignocellulosic raw materials illustrate this situation. Enzyme
cost contribution to bioethanol selling price has been shown to be as
high as 48% [4] when corn stover is used as feedstock and around 13%

on average [1]. Others have shown enzyme cost to have a considerable
effect on operating costs varying around 16 [5] to 19% [6], when the
feedstock is wheat straw and miscanthus, respectively.

As a way to reduce enzyme cost, enzyme improvement for better
biomass conversion has been and still is a critical research priority
[7,8]. Screening and selection of efficient organisms [9] and subsequent
optimization of culture conditions for enzyme production [10] are
routinely employed approaches towards this goal. Generally, the ob-
jective of optimization is achieving maximal lignocellulolytic enzyme
activities [7] and preparing an optimal enzyme cocktail which lead to
maximum reducing sugar content to be released from the lig-
nocellulosic feedstock for subsequent bioethanol fermentation [11–14].
It is common practice in this area of research to limit the scope of
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publications to report optimal conditions and achieved activities. For
example, Prasher and Chauhan (2015) studied the effect of various
carbon and nitrogen sources on lignocellulolytic enzyme production by
Dictyoarthrinium Synnematicum Somrith where optimal conditions were
found for laccase (Lac), manganese peroxidase, and lignin peroxidase
[15]. In another study, carboxymethyl cellulase (Cmc) activity was
optimized via the consideration of growth medium ingredients such as
peptone and yeast extract [16]. More recently, effect of medium in-
gredients and growth conditions were investigated with a statistical
analysis of achieved FPase, Cmc, and β-glucosidase (Bet) activities [17].

The effect of optimal enzyme production conditions and achievable
activities on overall bioethanol production techno-economics is not
trivial. A quantitative and computational scheme to relate enzyme
production optimization to bioethanol production process design is
imperative. It is crucial to realize that enzyme improvement is only one
aspect of a multi-faceted and interactive process design and develop-
ment effort for lignocellulose-derived bioethanol production. Other
aspects include feedstock pretreatment, fermentation, and downstream
processing. So, enzyme improvement must be considered within a
larger context including the conceptual design, modeling and simula-
tion of the complete bioethanol production process utilizing these en-
zymes [4,18].

Often, bioethanol process design studies incorporate enzyme cost
and performance as static assumptions [6], specified targets [19] or
uncertain variables [20]. There isn’t a dynamic link in any of these
examples or similar studies that could computationally propagate the
effects of enzyme production optimization on the techno-economics of
bioethanol production. The authors of this paper observe a lack of dy-
namic integration between enzyme improvement and process design
workflows. Therefore, a demonstration of concept level workflow is
presented in this paper that entertains the idea of process simulation-
integrated optimization of lignocellulolytic enzyme production.

In the conventional workflow, once a potential lignocellulolytic
enzyme producing organism is identified and characterized, optimiza-
tion of culture conditions of the selected organism is performed first
and independently [21]. Later and separately, results from the enzyme
optimization step (preferably quantified in terms of maximum enzyme
activities achieved and estimated cost of enzyme production) are used
within the conceptual design, modeling, and simulation of a bioethanol
production process [5]. This approach can result in a sub-optimal si-
tuation since there is no dynamic interaction between experimental
results and bioprocess simulations. Without such interactions, marginal
improvements in enzyme activities achieved via standalone optimiza-
tion in the first step may fail to allow feasible bioethanol production in
the second step. For instance, a certain set of optimal culture conditions
for enzyme production may marginally outperform another set of
conditions. However, a possible corresponding elevation in enzyme
production costs may be too high to justify the preference of the mar-
ginally better option. To quantify the trade-off, cost and performance of
the enzymes should be contextually related. A more holistic approach
should integrate the effects of changes in enzyme production conditions
with the techno-economic performance of the whole bioethanol pro-
duction process.

In summary, a computational scheme, that is practical and applic-
able, to integrate the experimental aspects of enzyme improvement
with simulations of bioprocesses, where these enzymes are to be uti-
lized, is lacking. This paper aims to present a workflow which de-
monstrates the abovementioned integrated approach on a case study.
The workflow offers a dynamic link between experimentation and
bioprocess simulation. Our research group has previously evaluated the
white rot fungus Pycnoporus sanguineus DSMZ 3024 for the production
of Lac, Bet, and Cmc as potential ingredients of a lignocellulolytic en-
zyme cocktail [22]. Also, a bioethanol production process utilizing
hazelnut husk (HH) as a lignocellulosic feedstock and the above-
mentioned enzymes was conceptually designed, modelled, and simu-
lated [23]. In this paper, a demonstration-of-concept level optimization

of culture medium ingredients and culture duration for the production
of the three enzymes using a process simulation-integrated scheme is
presented.

2. Materials and methods

The main contribution of the present study to bioethanol process
design and development literature is a methodological workflow which
integrates early stage exploratory experiments for the optimization of
lignocellulolytic enzyme mixture production with bioethanol produc-
tion process simulations. The workflow is demonstrated on a case study.

The main carbon source in the enzyme production culture medium
is HH. Addition of medium components (peptone as nitrogen source,
yeast extract as additional carbon and nitrogen source, malt extract as
additional carbon and nitrogen source, and sodium nitrate as an in-
organic nitrogen source) and culture duration are optimized. A set of
exploratory experiments are performed to collect enough data to es-
tablish three models to predict the activity of each enzyme under given
culture conditions. A multi-objective Pareto optimization [24] of the
three enzyme activities is performed to obtain a 21-sample non-domi-
nated Pareto-optimal set of results. Each of the 21 results contains a set
of culture condition values (auxiliary ingredient concentrations and
culture duration) and accompanying enzyme activities that would be
achieved under those conditions. None of the 21 results is superior to
the others (it is a non-dominated set of results) meaning that no im-
provement can be achieved in any one of the three activities without
compromising the others.

The critical step of the integrated optimization workflow is the es-
timation of a pseudo-enzyme cost (EC) based on culture medium
composition and duration as well as a pseudo-enzyme cocktail perfor-
mance metric (biomass conversion efficiency; CE) based on the
achieved activities of the three enzymes. These two values are calcu-
lated for each of the 21 Pareto-optimal results and subsequently fed into
the previously developed process model [23]. The overall process
performance is simulated for each Pareto-optimal result. The point in
the Pareto optimal set that gives the best process performance is se-
lected as the overall optimal result. The optimization results are not
only a function of culture conditions but also the bioethanol production
process techno-economics. Process simulation-integrated optimization
results are more informative compared to conventional standalone
optimization results.

2.1. Experimental

2.1.1. Strain and chemicals
All of the chemicals and reagents used for experiments were pur-

chased from Sigma unless stated otherwise. P. sanguineus DSMZ 3024
(Leibniz Institute-German Collection of Microorganisms and Cell
Culture) was used as lignocellulosic enzyme producing microorganism.
HH was supplied from local producers in northern region of Turkey. HH
was prepared as described in [22] for further use as main carbon
source.

2.1.2. Fungal growth and enzyme production
Malt extract agar (MEA) was used for fungal growth. MEA was

prepared in 1 l with the following ingredients: 20 g malt extract, 5 g
peptone from casein (peptone) and 20 g agar. Agar medium was ster-
ilized at 121 °C, 1 atm for 15min. Medium was cooled to 70 °C and agar
plates were poured under laminar hood. Agar plates were inoculated
with previously grown fungal cultures (cultures were passaged monthly
and kept in 4 °C for further use). Agar plates were incubated at 37 °C for
3 days. Spore suspension was prepared as mentioned in an earlier study
of our group [22].

Enzyme production medium contained 12 g/l HH and a total of
20 g/l additional nitrogen source as detailed in Table 1. pH was set to
7.0 with 1M NaOH. HH was added as the sole carbon source to induce
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lignocellulolytic enzyme production (Lac, Bet, and Cmc). Inoculation
with spore suspension was done according to [22]. Production was
carried out in 500ml Erlenmeyer flask with 200ml working volume.
Time course of enzyme production was decided depending on the
previous works of our group [22] and other groups [25,26]. Submerged
production lasted for 7 days with daily sampling, at 30 °C and 180 rpm
in a shaking incubator. All the experiments were done at least in du-
plicate.

Table 1 shows the concentration ranges of the medium components
used in this study. The components and concentrations were selected as
an interpretation of the authors’ of the present study based on previous
optimization studies on P. sanguineus [27] , Pleurotus ostreatus [28], and
Phlebia brevispora [29]. The experiments performed were early ex-
ploratory investigations to understand the effect of nitrogen sources on
the enzyme production. 6 exploratory experiments were designed as
tabulated in Table 2.

2.1.3. Enzyme activity assays
2.1.3.1. Laccase. Lac activity was measured as described elsewhere
[30] with following modifications: 15mM ABTS (2,2′-Azino-bis(3-
ethylbenzothiazoline-6-sulfonic acid) diammonium salt was used as
substrate. 0.950ml citrate buffer, 0.05ml enzyme solution (if dilution
was needed, final enzyme volume was kept as 0.050ml), 0.2ml ABTS
(dissolved in 0.1M sodium citrate buffer (pH 3.0)) solution were mixed
in spectrophotometric cuvette at room temperature for 3min and
absorbance was read at 420 nm right after timeout. For blank
solution, t= 0 sample was used as blank solution. One unit of Lac
activity was expressed as the amount of enzyme required to oxidize 1
μmole of ABTS in a minute under the assay conditions.

2.1.3.2. β-glucosidase. Bet activity was measured as described
elsewhere [31] with the following modifications: 10mM pNPG (4-
Nitrophenyl β-D-glucopyranoside) was used as substrate. 100 μl pNPG
solution, 100 μl enzyme solution (if dilution was needed, final enzyme
volume was kept 100 μl). 800 μl acetate buffer (0.1M, pH 4.5) were
mixed and the solution was put in water bath 45 °C for 15min. After
15min, 1ml 1M Na2CO3 was added to the tubes to stop reaction.
Absorbance was read at 420 nm. One unit of Bet activity was expressed
as the amount of enzyme required to release 1 μmole of pNP (p-
Nitrophenol) per minute under the assay conditions.

2.1.3.3. Carboxymethyl cellulase. Cmc activity was measured as
described elsewhere [32] with following modifications: 0.1 ml crude

enzyme solution and 0.9 ml 2% carboxymetylcellulose (dissolved in
0.1M sodium acetate buffer with pH 4.5) were vortexed in a heat
resistant glass tube and incubated in 45 °C water bath for 5min. 15min
later, 3 ml 3,5-dinitrosalicylic acid (DNS) was added, then tubes were
incubated in boiling water for 10min and transferred into ice.
Absorbance was read at 540 nm after the sample cooled down to
room temperature. One unit of Cmc activity was expressed as the
amount of enzyme required to release 1 μmole of reducing sugar per
minute under the assay conditions.

2.2. Modeling and optimization

2.2.1. Enzyme activity models (Kriging)
A total of 48 activity data points were acquired for each of the three

enzymes from time course experiments. Three empirical models were
generated using Kriging [33] which is argued to be a better choice
compared to more commonly used response surface models (low order
polynomials) for highly nonlinear systems [34]. Our group has shown
in a recent publication that Kriging outperforms conventional response
surface methodology in the modeling of a complex biodiesel production
scheme, using a limited number of exploratory experiments with pre-
dominantly temporal data [35].

Conventional response surface model structure is [36]:

y= f(x)+ e (1)

comprising a low order polynomial and a constant error whereas the
Kriging predictor is [33]:

y= f(x)+ z(x) (2)

comprising a low order polynomial and a stochastic error.
Each model describes and can be used to predict the activity of one

the three enzymes as a function of concentrations of medium compo-
nents and culture duration. DACE Kriging toolbox [37] under MATLAB
was used to generate the models.

Activity= f(A,B,C,D,E) (3)

2.2.2. Multi-objective optimization (Pareto)
Since there are three enzymes of interest being produced, the cul-

ture conditions were optimized to obtain the best possible results for
three activities; making this a multi-objective optimization problem
with the following objective functions:

=Activity f A B C D E( , , , , )Lac (4)

=Activity f A B C D E( , , , , )Bet (5)

=Activity f A B C D E( , , , , )Cmc (6)

The multi-objective optimization problem was solved using the genetic
algorithm-based multi-objective Pareto optimization functionality
under MATLAB. The MATLAB function, gamultiobj (available under
Global Optimization Toolbox), was executed with constraints on the
independent variables. The objective functions used for Pareto opti-
mization were the Kriging models generated for each enzyme (Eqs.
(4)–(6)). The constraints for the independent variables were taken as
the minimum and maximum values of the culture conditions used in the
experimental design (Table 1).

The Pareto optimization procedure yields 21 results, each in the
format of Eq. (7). Each result is a point in the multi-dimensional design
space identified by a set of independent variable values (medium
composition and culture duration) and the corresponding three enzyme
activities that would be observed if enzyme production was performed
under the identified conditions.

Table 1
Enzyme production medium component ranges.

Medium Component Concentration Levels (g/L)

Peptone (A) 0 10 20
Yeast extract (B) 0 10
Malt extract (C) 0 10 20
Sodium nitrate (D) 0 10 20

Independent variables A–D code for medium components in the designed ex-
periments. Additionally, an independent variable E codes for sampling time
points (E=0–7).

Table 2
Experimental design.

Experiments A (g/L) B (g/L) C (g/L) D (g/L)

1 20 0 0 0
2 10 10 0 0
3 0 10 10 0
4 0 0 20 0
5 0 10 0 10
6 0 0 0 20
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Activity Activity Activity f A B C D E[ , , ]@ , , , ,Lac Bet Cmc Opt Opt Opt Opt OptOpt Opt Opt

(7)

Each of these points lies on the non-dominated Pareto frontier. This
means, for the three activity values at each point, that there can be no
further improvements in any one of them without compromise in one or
both of the others. In other words, each point on the Pareto frontier is
equivalent in terms of multi-objective optimality.

2.2.3. Process simulation integration
Without the inclusion of another criterion, it is not possible to dis-

tinguish the best option out of the Pareto optimal results if optimization
of enzyme production is performed independently. In order to allow a
quantified determination of the best result along the Pareto frontier, an
additional criterion is needed. The estimated cost of each individual
result can be considered as an additional criterion. Although selecting
the result with the lowest estimated cost would be an option, this could
still produce a suboptimal situation when the performance of the whole
bioethanol production process is considered.

Each Pareto optimal result has a different combination of media
composition and culture duration which would generate a different
cost. Also, each result has a different combination of enzyme activities
which would generate a different performance in the bioethanol pro-
duction process. Therefore, multi-objective Pareto optimization should
be integrated with bioethanol production simulation in order to quan-
tify the cost-performance relationship.

2.2.3.1. Bioethanol process model. In a previously proposed process
model (hereafter called HH Process), HH was used as the
lignocellulosic feedstock for a bioethanol production process [23]. A
simplified process flow diagram is shown in Fig. 1. In the HH Process,
HH was steam-pretreated in a reaction vessel and cooled down before
lignocellulolytic enzyme mixture containing Lac, Bet and Cmc was fed
into the vessel. Lac acted as a biological pretreatment agent as a
secondary pretreatment of HH (after steam pretreatment), while Bet
and Cmc catalyzed lignocellulose hydrolysis. The ligninolytic effect of
laccase was shown previously by our group [22] and others [38,39].
Following the hydrolysis step, hydrolysate (as C source), peptone and

yeast extract (as organic N sources) were fed into the fermentation
vessel. Crude fermentation product (including bioethanol) was filtered
through microfiltration and this filtrate was then distilled for final
product recovery which was bioethanol with 95.5% alcohol content. All
the design preferences, unit operation selections, and assumptions were
taken from the referenced publication. The adopted model was used to
run simulations without any changes from its original version, except
enzyme cost and enzyme performance.

In the HH Process model, cost of enzyme mixture to hydrolyze 90%
of the HH into fermentable sugars was assumed to be 2 $/kg. These
values represent the best-case scenario since they are given as feasi-
bility targets in [23]. In other words, the target for an enzyme im-
provement program would be to achieve the production of an enzyme
mixture at 2 $/kg. The enzyme mixture would hydrolyze 90% of the
HH.

2.2.3.2. Enzyme performance and cost integration. Optimization of
enzyme production and the bioethanol production process are linked
via the cost of the enzyme mixture (EC) and efficiency of the conversion
achieved using the enzyme mixture (CE). The optimized conditions are
assumed to dictate enzyme cost whereas conversion efficiency is taken
as a function of the three activities achieved under the optimized
conditions.

=EC f A B C D E( , , , , )Opt Opt Opt Opt Opt (8)

=CE f Activity Activity Activity( , , )Lac Bet CmcOpt Opt Opt (9)

90% conversion (value used in the bioethanol model) is assumed to be
the best-case scenario when the maximum observed activities for each
enzyme is considered (Lacmax, Betmax, Cmcmax). So, optimization of
enzyme production provides a possible reduction of the cost of enzyme
from a maximum of 2 $/kg. The 2 $/kg cost is assumed to occur when
maximum values of each operational condition is used e.g. A= 20,
B=10, C=20, D=20, and E= 7. Each of these factors are taken to
affect the cost equally.

Each Pareto-optimal result involves optimal values for the opera-
tional conditions (Aopt, Bopt, Copt, Dopt, Eopt) and accompanying activ-
ities achieved for the three enzymes (Lacopt, Betopt, Cmcopt). Because the
production is a one-pot synthesis of the three enzymes together, it is not

Fig. 1. Simplified PFD of HH Process.
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possible to obtain optimal activities as high as those that could be ob-
tained if conditions were optimized for each enzyme individually. How
far the optimal activities of each enzyme are from their respective
maximums is assumed to affect the overall conversion. Each enzyme is
assumed to affect the overall conversion equally.

Following scheme is applied to calculate EC and CE:
Amax= 20; Bmax= 10; Cmax= 20; Dmax= 20; Emax= 7 (maximum

values from experimental design)
WeightA = WeightB = WeightC = WeightD = WeightE= 0.2 (each

condition has an equal effect)

coefA=Aopt/Amax (10)

coefB=Bopt/Bmax (11)

coefC=Copt/Cmax (12)

coefD=Dopt/Dmax (13)

coefE= Eopt/Emax (14)

EC=$2/kg * (WeightA*coefA+WeightB*coefA+WeightC*coefC+
WeightD*coefD+WeightE*coefE) (15)

Lacmax= 581.7; Betmax= 111.9; Cmcmax= 382.2 (maximum activity
values obtained in experiments)WeightLac=WeightBet=
WeightCmc= 1/3 (each enzyme has an equal effect)

coefLac= Lacopt/Lacmax (16)

coefBet= Betopt/Betmax (17)

coefCmc=Cmcopt/Cmcmax (18)

CE= 90% * (WeightLac*coefLac+WeightBet * coefBet+WeightCmc
*coefCmc) (19)

The calculated EC and CE were then fed into the bioethanol process
model to calculate the net present value (NPV) of the process as de-
scribed in [23].

3. Results and discussion

3.1. Enzyme activities

The activities of the three enzymes measured in the six exploratory
experiments were tabulated in Table 3. Maximum activity of Lac (581.7
U/L) was observed in medium containing malt extract (ME) as addi-
tional nitrogen source. Maximum Cmc activity (382.2 U/L) was ob-
served in medium containing peptone (P) as the sole nitrogen source
and maximum Bet activity (111.9 U/L) was observed in the medium
containing yeast extract (YE) and sodium nitrate (SN). The maximum
activities of the three enzymes were all obtained the on 7th day of
production. Arora and Sharma (2011) investigated the effect of ni-
trogen sources for bioprocessing of wheat straw in solid-state fermen-
tation (SSF) via P. brevispora and reported that although digestibility
increased with ME supplement, it also decreased the total organic

content (TOC) by 18.8%. They concluded that increase in digestibility
and decrease in TOC might be attributed to increase in biomass since
ME is rich in simple sugar amino acids [29]. Moreover, Teoh et al.
(2011) conducted a study to investigate the optimum medium compo-
sition for mycelial growth and antifungal activity of P. sanguineus. In
this work, they found out that 10 g/l ME, YE, dextrose and maltose
supported the highest fungal growth [27]. In the presence of readily
available reducing sugar, fungi produce high levels of Lac enzyme [40].
In our experimental results, it is also seen that presence of ME led to
increased levels of Lac activity, compared to other supplements. In-
creased biomass production could also be the reason of increased ac-
tivity of Lac. Increased biomass production means increased enzyme
activity due to cumulative effect of each cell's production.

Kachlishvili et al. (2006) stated that highest Cmc activity was ob-
served with the medium containing beech tree supplemented with
peptone during SSF via P. dryinus IBB 903, P. tuberregium IBB 624 and L.
edodes IBB 363, which are members of Basidiomycota as P. sanguineus
DSMZ 3024 [41]. In experiments containing ME, no significant change
in Cmc activity was observed as time progressed. Since there is more
than 60% maltose in ME [42], this medium is a suitable environment
for the growth of P. sanguineus which was already grown on MEA for
preparation of spore suspension. Therefore, the fungus had potentially
readily expressed enzymes to degrade maltose. As fungal biomass in-
creased, microbial degradation of HH increased too. This degradation
could be leading to the extraction of phenolic compounds from HH as
similarly observed by others [43].

Bet production media usually do not contain organic nitrogen
source with some exceptions [44]. Most of the medium optimization
studies for Bet production were done with the medium composed of
lignocellulosic biomass impregnated with suitable salts (modified ver-
sions of minimal Czapek, Mandel and Reese medium etc) to induce Bet
production. In our study, highest Bet activity was observed in Experi-
ment 5, which contained SN as inorganic nitrogen source and YE as
organic nitrogen source. When Experiments 5 and 6 were compared, it
was obvious that Bet activities of Experiment 5 were higher than Ex-
periment 6. During sterilization of the medium containing HH (which
can be accepted as "partial" hydrothermal pretreatment of feedstock),
phenolics and furan derivatives might have leaked to the medium. It
was stated in [45,46] that hydrothermal pretreatment methods of lig-
nocellulosic biomass release furan derivatives and phenolics. Phenolic
acids, such as tannic and gallic acid inhibited the Bet activity in Tri-
choderma reesei [46]. Some studies in the literature state the possibility
of Bet adsorption onto lignin [47] and inhibition of this adsorption is
possible with addition of soybean protein [48]. YE might have caused a
similar effect. Moreover, when all other experiments containing YE
were analyzed, it was observed that presence of YE led to increased Bet
activities in all cases (Table 3). Therefore, besides being a rich amino
acid, vitamin and mineral source for microbial growth and maintenance
of vitality, presence of YE might be presumed as a blocker for Bet ad-
sorption onto lignin.

Table 3
Results of exploratory experiments.

Days Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5 Experiment 6

Lac Bet Cmc Lac Bet Cmc Lac Bet Cmc Lac Bet Cmc Lac Bet Cmc Lac Bet Cmc

0 0.0 0.0 114.6 0.0 0.0 114.6 0.0 0.0 189.9 0.0 0.0 344.7 0.0 0.0 195.9 0.0 0.0 137.2
1 7.6 0.8 112.2 6.3 0.7 117.0 13.0 0.1 220.5 12.9 1.2 264.5 5.6 −13.2 194.8 2.8 −32.6 143.4
2 14.9 2.9 142.2 29.7 4.2 105.0 75.7 3.3 234.1 61.3 1.7 326.2 16.4 10.5 182.1 7.7 −40.7 134.1
3 24.6 17.8 139.0 59.1 36.0 127.4 131.7 14.4 243.9 92.3 18.3 296.4 28.9 35.6 186.4 12.4 −60.0 120.2
4 39.1 44.8 178.3 64.4 41.1 129.0 153.9 31.2 222.8 75.6 43.2 349.9 29.8 67.8 152.7 22.3 −52.9 131.8
5 35.5 28.9 237.5 50.6 51.6 144.6 54.3 42.9 312.3 111.1 7.0 168.8 32.9 86.1 183.8 29.9 −36.3 166.5
6 35.1 27.5 317.7 50.0 60.3 155.8 39.1 51.7 243.4 255.3 6.7 267.1 29.1 89.2 223.0 31.7 −32.2 131.0
7 69.0 30.4 382.2 48.9 52.9 159.4 102.1 49.8 365.8 581.7 26.2 276.3 30.1 111.9 242.3 32.9 −18.7 143.4
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3.2. Activity models

Generally, exploratory experiments, such as those performed in this
study, give preliminary insights into the nature of the new lig-
nocellulolytic enzyme producing organism like those mentioned in the
previous section. Subsequently, a new set of experiments were design
based on the insights gained. The experimental design often follows a
conventional statistical design of experiments approach such as re-
sponse surface methodology. The primary objective of these experi-
ments is the optimization of enzyme production. Usually they are static
experiments with no temporal data. The data is then used to generate
low order polynomial models of optimization objective functions (en-
zyme activities) which can be used in numerical optimization schemes.

Recently, it was shown that a different type of modeling approach,
namely Kriging, allows the generation of models to be used in numer-
ical optimization, using the time profile data from the exploratory ex-
periments without the need to perform dedicated static experiments
[35]. Accordingly, for this study, three Kriging-based models were
generated for each enzyme activity as a function of the five enzyme
production operating conditions. All three models showed good model
statistics as tabulated in Table 4. The R2 values indicate the percentage
of experimental data variation explained by the models. Root mean
square error values (RMSE) are a measure of the average deviations of
model predictions from experimental values. The RMSE of Lac activity
model was less than 1% of the maximum Lac activity observed. The
RMSEs of Cmc and Bet activities were 5 and 7.7% of their respective
maximums observed.

Fig. 2 shows the model predictions against experimental data,
confirming the good fit between them. Lac activity model seems to be
the best fitting with its respective experimental data. In comparison, Bet

activity model shows very good fit for experiments 2, 3, 5, and 6
whereas the 4th day activity measurements that belong to experiments 1
and 4 show a slight mismatch. This may be due to a possible change in
the behavior of the organism initiated on that day in the P and ME
containing media. Whatever that change may be, the model seems to
have incorporated it in the following data points for those two ex-
periments. Cmc activity model arguably represents the overall trends in
all of the experiments albeit not as accurately as the Lac and Bet activity
models (as shown by the R2 values). This can possibly be attributed to a
higher number of uncontrolled factors affecting the Cmc activity assay
compared to the Lac and Bet activity assays [43]. This is acceptable as
long as a significant proportion of the overall experimental variation is
explained by the model (R2= 0.85).

3.3. Optimization

The availability of activity models allows numerical optimization.
The first part of the optimization workflow performs genetic algorithm
based multi-objective optimization with the three activity models as
objective functions. Five culture operating conditions (A–E) were op-
timized. 21 Pareto-optimal points were identified on the solution space.
The resulting 3-D Pareto frontier is displayed in Fig. 3. Each Pareto-
optimal point provided five enzyme production conditions and the
corresponding enzyme activities that would be achieved, as predicted
by the activity models. All Pareto-optimal points were equivalent.
Trying to improve one of the activities would necessarily cause a de-
terioration in the others. Eight leftmost columns of Table 6 summarize
the results of multi-objective optimization.

Process simulation integration of multi-objective optimization re-
sults was performed twice. In the first instance, the effects of five op-
erating conditions on the enzyme cost and the three activities on en-
zyme efficiency were taken to be equal as detailed above. In the second
instance, the effect of culture duration was considered to be more sig-
nificant compared to the medium component concentrations. Also, Bet
activity was considered to be more important compared to the activities
of Lac and Cmc. The weight schemes for the two cases are given in
Table 5.

The results of the optimization are tabulated in Table 6. In Case 1,
each enzyme production operating condition was assumed to have an

Fig. 2. Kriging model fit to experimental data.

Table 4
Model statistics for the three activity models.

Activity Model R2 RMSE

Lac 0.997 4.7125
Bet 0.975 5.6449
Cmc 0.847 29.77
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equal effect on the overall cost of enzyme production. This is a sim-
plifying assumption to demonstrate the application of the workflow. In
a different enzyme production system, the effects of different operating
conditions on the cost of enzyme will vary. In Case 1, the Pareto-op-
timal result with the best simulated NPV is detailed in the fourth row of
Table 6. NPV is simulated to be $76.1 million. The enzyme production
operating conditions for this result require minimum P (1.1 g/L), YE
(0.2 g/L) and SN (0.4 g/L) use. ME is required near its maximum level
(19.8 g/L). Culture duration required was seven days.

In Case 2, culture duration is considered to be a more significant
factor contributing to the cost of enzyme production. This is reasonable
because a long culture requires an increased input of utilities and
consumables while at the same time lowering productivity. Also, in
Case 2, Bet activity is considered to have a more significant effect on the
performance of the lignocellulolytic enzyme cocktail. Bet is usually the
limiting enzyme in most lignocellulolytic enzyme mixtures [49–52],
making this assumption a reasonable case to investigate. When neces-
sary modifications were made to the weighing scheme to reflect the
considerations of Case 2 (as detailed in Table 5), the Pareto-optimal
result with the best simulated NPV changed, compared to Case 1. As in
Case 1, minimum P and SN and maximum culture duration were re-
quired. However, in contrast to Case 1, Case 2 required maximal YE and
minimal ME. In Case 2, simulated NPV was increased to $106.6 million.

The response surfaces for Cases 1 and 2 relating the combined ef-
fects of yeast and malt extract concentrations in the enzyme mixture
production on NPV of bioethanol production process are given in Fig. 4.
Response surfaces for other combinations of culture ingredients can be
found in Supplementary Materials.

4. Conclusion

We have developed and demonstrated a process simulation-in-
tegrated multi-objective optimization workflow for lignocellulolytic
enzymes production. Time-profile data from six experiments with
varying medium compositions were collected within an exploratory
experimentation scheme. The data were used to generate enzyme ac-
tivity models by Kriging for three lignocellulolytic enzymes, Lac, Bet,
and Cmc, as a function of medium composition and culture duration.
We had previously shown that Kriging performs better compared to
more conventional response surface methodology with temporal data
sets from similar exploratory experiments. The generated models were
used to perform multi-objective optimization of medium composition
and culture duration using a Pareto-based approach. The Pareto-op-
timal results were linked via enzyme performance and enzyme cost
functions to a bioethanol production process simulation which had
been developed by our group before. The cases, where significance of
enzyme production conditions affected bioethanol production differ-
ently, were analyzed with the process-simulation integrated

Fig. 3. 3-D Pareto frontier.

Table 5
Weight schemes for the two cases.

Case 1 Case 2

WeightA 0.2 0.1
WeightB 0.2 0.1
WeightC 0.2 0.1
WeightD 0.2 0.1
WeightE 0.2 0.6
WeightLac 1/3 0.5/3
WeightBet 1/3 2/3
WeightCmc 1/3 0.5/3

Table 6
Process simulation-integrated multi-objective optimization results.

Pareto Optimal Operating Conditions for Enzyme Production Model Predicted Enzyme
Activities

Calculated CE (%) Calculated EC
($/kg)

Simulated NPV ($ mil)

Peptone (g/
L)

Yeast
Extract (g/L)

Malt Extract
(g/L)

Sodium
Nitrate (g/L)

Duration
(Days)

Lac (U/
L)

Bet (U/
L)

Cmc (U/
L)

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

20.0 0.5 6.9 0.6 7 143.7 18.7 333.0 38.6 26.8 0.97 1.48 −38.1 −148.0
1.1 9.9 0.3 7.4 7 32.0 95.8 228.0 45.2 61.2 0.97 1.46 8.5 106.6
5.3 9.7 0.6 10.5 7 48.3 81.0 209.6 40.7 52.9 1.11 1.52 −20.8 56.0
1.5 0.2 19.8 0.4 7 559.5 18.3 282.7 56.0 35.3 0.84 1.42 76.1 −66.8
2.1 7.6 19.5 2.9 7 363.4 30.6 297.7 50.3 37.5 1.19 1.60 40.7 −49.3
1.8 7.1 17.3 3.0 7 325.1 34.0 299.1 49.4 38.4 1.13 1.56 33.1 −41.5
0.2 9.7 0.7 7.6 7 29.1 95.3 229.4 45.1 60.9 0.94 1.43 7.4 104.9
0.4 9.6 2.9 7.5 7 43.2 89.2 246.8 45.5 58.6 1.00 1.50 9.7 91.1
1.2 9.0 6.3 6.8 7 72.7 71.8 261.0 43.5 50.6 1.03 1.49 −2.2 42.2
1.1 6.0 7.3 5.9 7 142.3 56.2 270.6 43.7 44.4 0.93 1.46 −1.0 2.7
17.2 0.5 15.9 0.7 7 322.6 10.0 311.8 43.8 25.9 1.09 1.53 −0.5 −156.8
1.1 0.7 16.1 2.2 7 444.4 21.5 285.8 51.1 34.2 0.81 1.40 46.3 −76.7
2.0 8.5 15.3 2.1 7 247.9 39.1 301.7 47.0 39.2 1.13 1.56 18.4 −34.3
1.7 7.4 12.3 3.3 7 207.4 45.3 294.0 45.9 41.2 1.04 1.51 12.2 −17.4
2.1 7.9 16.2 2.7 7 280.4 37.0 300.4 48.0 38.8 1.14 1.57 24.5 −37.5
4.1 0.4 19.3 0.2 7 505.5 14.1 282.9 52.1 31.7 0.88 1.42 52.0 −99.8
4.8 9.7 0.7 8.3 7 45.6 83.0 216.3 41.6 54.2 1.05 1.49 −13.7 63.9
1.3 7.9 11.7 6.2 7 165.0 50.8 282.7 44.3 42.6 1.09 1.53 2.6 −8.6
1.8 4.6 17.3 3.0 7 388.8 28.6 294.0 50.8 36.9 1.03 1.51 44.0 −53.7
19.7 0.5 17.7 3.2 7 321.3 10.3 307.3 43.5 25.9 1.23 1.60 −2.9 −157.7
1.5 0.2 17.3 0.4 7 498.7 19.4 287.4 53.5 53.5 0.79 1.39 60.9 −73.7
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optimization workflow. A shift from a ME to YE-dominated medium
requirement was observed in Case 2 compared to Case 1. This ob-
servation was made possible with the process simulation-integrated
optimization workflow.

This demonstration hopefully highlights the importance of process
simulation integration from the earliest stages of biocatalyst screening,
selection, and optimization not only for lignocellulolytic enzyme pro-
duction towards bioethanol manufacturing but also for the wider bio-
catalysis field. The present manuscript was intended as a demonstration
of the concept. Many details entail further refinement not the least of
which regards enzyme performance and cost calculations and related
weighing schemes. This is the subject of ongoing studies by our group.
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